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Characteristic Impedance of
Microstrip Lines

JOHN R. BREWS, MEMBER, IEEE

Abstract —It is shown that it is feasible to force the complex power P of
a microstrip line to be given by the usual circuit definition:
P=1*V/2

where I and V' are the current and voltage of the equivalent transmission
line and * denotes complex conjugation. If this requirement is made, then
the three common definitions of characteristic impedance (namely, the
voltage~current, power—voltage, and power—current definitions) all be-
come equivalent. The remaining arbitrariness in microstrip characteristic
impedance Z; stems not from the choice of definition, as sometimes
argued, but from the ability to choose one of the magnitudes |/|, |V}, and
| Z,| for convenience, and also to choose the phase of either I or V' (but not
their relative phase). This clarification should make it easier to simplify
equivalent circuits for drivers, loads, and discontinuities.

1. INTRODUCTION

OR non-TEM structures such as microstrip lines it
generally is agreed that the characteristic impedance is
not unique. It also is agreed that the root of this uncer-
tainty is the longitudinal field components of non-TEM
modes. Because of these components, current and voltage
are not uniquely defined in terms of the usual TEM path
integrals of the fields. Faced with an ambiguity in the
meaning of current I and voltage V' a variety of results for
the characteristic impedance Z; is obtained.
Usually, one of three definitions for Z;, is used, as
introduced by Schelkunoff [1], [2]:

1) the voltage—current definition:
Zy=V/I
2) the power—voltage definition:
Z,=|V1>/(2P%)

where P is the complex power, or
3) the power—current definition:

Z,=2P/|I)?

(1)

@)

(3)

where * denotes complex conjugation, | | denotes magni-
tude, and a time dependence exp ( jwt) is assumed. Plainly,
these definitions lead to a variety of results if I and V
themselves are not unique. Examples can be found in
Bianco et al. [3].

Does the choice of definition matter? For microstrip,
authors usually state a preference for the power—curent
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definition, while for slotline they prefer a power—voltage
definition. For example, Kuester, Chang, and Lewin [4]
suggest “one may have to bear all three definitions in
mind, and change between them as circumstances dictate.”
Jansen and Kirschning [5] state “the usefulness of any
voltage per current definition appears to be restricted” and
“what is required in practical [microstrip] design work...
is obviously represented best by the power—current formu-
lation.” Jansen and Koster [6] go further, stating that the
voltage—current definition “can be excluded a priori.”

Such proposals are incomplete. Omitted is the very
natural requirement upon any transmission line model that
the complex power P satisfy the relation

P=1*V/2. (4)

If (4) is satisfied, then (2) and (3) follow from (1) by
substitution of I or V in terms of P from (4). That is, as
pointed out by Schelkunoff [2], all three definitions of
characteristic impedance are identical if (4) applies.

If all three definitions of Z; should agree, then why is
there controversy over which definition is the most suita-
ble? Is there a reason not to adopt (4)? For example,
Jansen and Koster [4] suggest that current and voltage
might not provide an adequate description of a hybrid
mode. Can the power condition (4) be satisfied in general?
This note shows that (4) can be satisfied at least for the
case where only one mode propagates, even if this is a
hybrid mode. Therefore, all three definitions of Z, can be
made to agree by using combinations of current and
voltage compatible with the power given by (4).

II. VALIDITY OF THE I *}/ RELATION FOR POWER

The transmission line that is equivalent to a given micro-
strip line should propagate the same power. This power is
given by the integral of Poynting’s vector across the wave-
guide cross section, that is,

P=1}[ax [dy{E.H}~EH?) (5)
where propagation is in the z-direction, and E, H refer to
the electric and magnetic fields. The power P from (5) is
complex, and some authors restrict attention to only the
real part of P, which corresponds to the time-averaged
Poynting vector, and ignore the imaginary part, which
corresponds to the reactive power circulated between the
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electric and magnetic fields [7]. Here, following Schelkunoff
[2], both real and imaginary parts of the power are re-
quired to be the same in the microstrip line and its
equivalent transmission line.

We now show that (5) can be made to agree with (4) for
the case when only one mode can propagate (for example,
the hybrid, quasi-TEM mode). The development parallels
very closely the presentation of Marcuvitz [8, pp. 3—-18] for
waveguides. The major differences are as follows.

a) The dielectric permittivity is allowed to be complex
and also a function of transverse position. That is, ¢ =
e(x, y) where propagation is in the z-direction.

b) The magnetic permeability also is complex and p =
p(x, y).

As a result, the modes obtained from Maxwell’s equa-
tions generally are hybrid modes, not the TE and TM
modes used by Marcuvitz. The general functions e(x, y)
and p(x, y) include lossy microstrip as a special case with
piecewise constant € and p, and also other structures such
as finlines and optical waveguides.

One finds even in this more general case that the fields
can be represented as [9]

E(x,y,z) =E/(x,y)V(z)+nE/(x,y)I(z)  (6)
H(x,y,z)=H/(x,y)I(z)+ 27 'H(x, y)V(z). (7)

Here the subscripts ¢ and [ refer to vectors transverse to
and along the direction of propagation, and 7 is the
intrinsic impedance of empty space in ohms, introduced
only to make the dimensions of both the transverse and
longitudinal components the same (inverse length). If the
propagating mode were a TE or TM mode, then
E,(x, y), H(x, y) would become proportional to the mode
functions {e’, b’} or {e”, h”’} of Marcuvitz [8, p. 4]. In (6)
and (7), V(z) is in V, I(z) in A, E(x, y,z) in V/m,
H(x,y,z)in A/m, and E,(x, y), H(x, y)in m™L,

As shown in [9], (6) and (7) satisfy Maxwell’s equations
provided that I(z) and V(z) satisfy the usual transmission
line equations, namely,

dl(z) Y
il ‘Z—OV(Z) (8)
) vzuite) ©)

which, of course, have the solutions

V(z)=Aexp(—yz)+ Bexp(vyz) (10)

I(z)=Zi0{Aexp(—yz)~Bexp(yz)}. (11)

From the solutions (10) and (11) it is evident that vy is the
(complex) propagation constant of the mode. Its value is
determined by the eigenvalue equation for the transverse
mode amplitudes E,(x, y) or H/(x, y). However, there is
no restriction on Z,. That is, (6) and (7) are solutions of
Maxwell’s equations regardless of the value of Z;. From
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(10) and (11), it is clear that the impedance defined by (1)
is Z, only for the case of no reflected wave (B = (), as also
is true of (2) and (3).

Using (6) and (7) in (5), we find that (5) agrees with (4)
provided that

f dx [dy {E,H~ (12)

The left side of (12) is complex, while the right side is real.
Therefore, it appears that (12) might be hard to satisfy.
However, using Maxwell’s equations and the transmission
line equations (8) and (9), one finds that (12) can be
reexpressed as [9]

E HY}=1.

1 2
fdxfdy{;[v X E,]-[v xE,]*—wqu,P} =je
0

(13)

and

fdxfdy{élv X H]-[vxH]" - wzulHAz} = joYZy.
(14)

Thus, the requirement that the complex power from
Poynting’s vector, (5), agree with the circuit definition, (4),
is the same as the restrictions (13) and (14) upon the
characteristic impedance Z,. Using the customary defini-
tions of the transmission line resistance R, inductance L,
conductance G, and capacitance C (all per unit length),
namely,

R+ joL=vZ, (15)

(16)

one finds that (13) and (14) are simple generalizations of
common expressions for R, L, G, and C extended to the
case where longitudinal field components (nonzero cur/ of
the fields) exist [9]. Consequently, if Z, is chosen so that
(4) applies to the complex power, the resulting R, L, G,
and C reduce to the usual parameters [10] when the
longitudinal field components are small.

It should be noted that E, and H, are connected by
Maxwell’s equations, so that (13) and (14) express the
same condition on Z,.! In addition, because the field (6)
determines only the product of E, and V(z), E, can be
multiplied by an arbitrary complex constant, provided

.
G+ joC=—
joC =5

! For example, from Maxwell’s equations one finds

v{——-—#(xl’y) v-ln(x y)H,]} +v2H, = joyZye(x, y)(k X E,)

and

v{ ‘(xl’ DA y)E’]} +Y?E, = - jwzlon(x,y)(fc X H))

where k is a unit vector in the z-direction.
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only that V(z) is divided by the same constant. Conse-
quently, only the phase of the left side of (13) or (14) is
fixed. That is, the requirement that the two power expres-
sions (4) and (5) be equal determines only the phase of the
characteristic impedance, and its magnitude remains arbi-
trary.

At this point, one sees the natural requirement that the
power be given by (4) can be satisfied, provided that the
phase of the characteristic impedance is chosen to satisfy
(13) and (14). Because satisfaction of (4) makes all the
definitions (1)—(3) equivalent, there is no basic advantage
to any particular choice of definition (1)—(3), and one¢’s
choice is decided by accessibility of I, ¥, or both.

III. DETERMINATION OF CURRENT AND VOLTAGE

Because of the longitudinal field components in a non-
TEM structure, the usual line integrals of the field vari-
ables used to define current and voltage are path-depen-
dent. This matter is discussed clearly by Getsinger [11].
However, more general definitions of current and voltage
can be obtained from (6) and (7) using the condition (12).
One finds [9]

I(z)=(.1

JoyZ,

)*fdx/dyH(x,y,z)

1 *®
-{v X {—v XHt]—wz,th} (17)
€
and

V(z) = (;i—oy)*fdxfdyE(x,y,z)

*

~{vx[§v XE,}—wzeE,} . (18)

Equations (17) and (18) show that “current” and “ voltage”
are abstract entities, related to weighted averages of the
transverse fields across the waveguide cross section (cf.
Marcuvitz {8], p. 5). The definitions (17) and (18) do not
involve path integrals, and are well defined even when
longitudinal field components are present. However, (17)
and (18) do not determine a unique I or V until the
magnitude and phase of H, or E, are decided.

For example, if the magnitude of Z; is fixed, then the
magnitude of E, is determined by (13) and that of H, is
determined by (14). These two equations also determine
the phase of Z,, as already discussed. With the magnitudes
of the transverse modes determined, (17) and (18) de-
termine the current and voltage, with phases determined
by the phases of H, and E,, respectively.?

*Although the phases of I and V are determned by (17) and (18), their
relative phase is not arbitrary. That is, the phase of either H, or E, can be
chosen arbitrarily, but their relative phase is fixed by Maxwell’s equations
(see Footnote 1). Thus, the relative phase of I and V also is not arbitrary,
in accordance with (1).

However, the formulation based upon (13), (14), (17),
and (18) is not restricted to choosing the magnitude of Z,
first, and then determining 7/ and V. If it is more conve-
nient, simple rearrangement of the equations allows volt-
age (or current) to be chosen first, with current (or voltage)
and |Z,| determined afterwards. For example, (14) can be
used to eliminate Z, from (17), thereby determining the
magnitude and phase of H, once I(z) is given. Then Z;
can be obtained from (14), E, from H,, and V(z) from
(18). This procedure serves to generalize (1)—(3) because it
works even when reflected waves are present.

As a result of this interdependence of I and V, it is not
surprising that some simple choices for current and voltage
are not compatible. For example, if one takes current as
total longitudinal strip current in definition (3) and voltage
as strip center-voltage in definition (2) without regard for
compatibility, then it is not surprising that the different
definitions produce different Z,’s.

IV. THE ROLE OF CONVENIENCE

Although many authors use a current or a voltage vari-
able chosen in an arbitrary manner, this choice often is
considered as merely expedient, as of uncertain status, or
as tied to the choice of one of the definitions (1)-(3). In
fact, such choice is legitimate and unrestricted: one is free
to select from I, V, and |Z,| whichever variable is more
convenient, and to ascribe an arbitrary amplitude to the
variable of choice.

For example, suppose one elects current as the indepen-
dent variable. According to (7), the component of mag-
netic field normal to the direction of propagation,
H, (x, y, z), satisfies

1(z) = H,(x,y,2)/H(x. y)- (19)

That is, if current is selected as the independent variable, the
only requirement upon I(z) is that its z-dependence be
proportional to that of the normal component of the
magnetic field of the propagating mode. Otherwise, (19)
could not be satisfied. The constant of proportionality is
arbitrary and can vary with frequency because it de-
termines only the arbitrary normalization of H,(x, y).
Once I(z) is selected, thereby fixing the magnitude and
phase of H/(x, y), Z, is fixed by (14), and E,(x, y) is
fixed by Maxwell’s equations (see Footnote 1). Then
E,(x, y) in turn determines V{(z) through (6) or (18).

In the same way, if one selects voltage as the indepen-
dent variable, then from (6) or (18) the component of
electric field normal to the direction of propagation,
E (x, y, z), satisfies

V(z)=E,(x,y,2)/E(x,y).

That is, if voltage is selected as the independent variable, the
only requirement upon V(z) is that its z-dependence be
proportional to the z-dependence of the normal compo-
nent of the electric field of the propagating mode. Again,

(20)
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the constant of proportionality is arbitrary, corresponding
to a choice of magnitude and phase for E,(x, y).

One can exploit this arbitrariness. For example, Kuester
et al. [4] have shown that the analysis of a slot voltage
driver in'a microstrip line is formulated naturally in terms
of the longitudinal strip current. This current satisfies (19),
so it is convenient and perfectly general to choose the
abstract transmission line current to be this strip current.
This choice does not restrict one to the use of a
“power—current” definition of impedance. However, it
does determine a corresponding voltage and, if this voltage
is used, all the definitions (1)—(3) will produce the same
impedance as the “power—current” definition for the case
of no reflected waves.

It also may happen that one wishes to use a simple TEM
equivalent circuit for the microstrip line. So long as the
circuit has the correct phase for Z, one can choose Z; to
be the TEM impedance. However, then the current and
voltage are determined to within a common phase factor,
and need not be the TEM current and voltage. Satisfaction
of Kirchhoff’s laws at the junction between the transmis-
sion line and any load, driver, or discontinuity is arranged
by adjustment of the equivalent circuit that represents this
junction.

In short, choosing current and voltage for convenience is
subject to remarks similar to those for waveguides made
earlier by Marcuvitz [8, pp. 8, 105, 119]. In particular, he
says, “Although the voltage, V, and current, I, suffice to
characterize the behavior of a mode, it is evident that such
a characterization is not unique. Occasionally it is desir-
able to redefine the relations between the fields and the
voltage and current in order to correspond more closely to
customary low-frequency definitions, or to simplify the
equivalent circuit description of waveguide discontinuities.
These redefinitions introduce changes of the form [gener-
alized here to complex N]

1,2 I=(N*)1/2f

V=V/(N) (21)
where the scale factor N is so chosen as to retain the form
of the power expression.” Using this transformation, the
impedance becomes

Zy=Z,/IN|. (22)
Note that (22) does not alter the phase of Z;, and (21)
does not alter the relative phase of 7 and V.

V. CONTROVERSY REVISITED

Once (4) is adopted, controversy over the choice of
definition (1)—(3) is ended. However, one still may discuss
the practical value of different impedances for different
problems, and much of this discussion in the existing
literature remains valid with a shift in the definitions of
“power-current” and “power—voltage” impedances. In-
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stead of taking these terms to indicate an equation of
definition (which is of no consequence), one may take
them to indicate that the “power” is given by (4) and that
the “current” or the “voltage” is the variable chosen for
convenience, Corresponding to a variety of quantities that
can represent the “current” (or “voltage”), there is a
variety of “power—current” (or “power—voltage”) imped-
ances. )

The term “voltage—current” impedance is harder to
rehabilitate. To be consistent with (4), this term should
mean that the magnitude of the ratio of voltage to current
(that is, |Z,|) was chosen as the variable of convenience.
However, in the literature, the “voltage—current” defini-
tion usually combines a voltage and a current incompatible
with (4). This incompatibility probably causes the behavior
leading to the negative comments about “ voltage—current”
impedances quoted in the Introduction.

VI. SUMMARY

It has been shown that it is feasible to impose the usual
current—voltage relation for complex power (4) for the case
when one mode propagates, even if this mode is a hybrid
mode of a non-TEM structure. Once imposed, the complex
power condition (4) forces all the definitions of character-
istic impedance (1)-(3) to agree. With this complex power
condition imposed, current, voltage, and magnitude of the
characteristic impedance all are interdependent. One is
free to choose only one of the magnitudes |I), |V}, and |Z,|
arbitrarily and also to choose the phase of either I or V
(but not their relative phase).

As the requirement (4) for complex power agrees with
ordinary circuit theory, and certainly is useful in applying
any equivalent circuit, it seems reasonable to adopt it.
Although such adoption does not lead to a unique char-
acteristic impedance, it ends any debate over the choice of
definitions (1)—(3). Instead, it places attention on the
simplification of circuits through the choice of current,
voltage, or magnitude of characteristic impedance.
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